
ARTIO OB Bridge Documentation

Tomáš Vantuch
Michal Unzeitig

© Copyright 2013 - ARTIO International Co.

OB Bridge Documentation
ARTIO

Publication date: 5.8.2013
Version: 1.0.1

Abstract

User documentation for ARTIO synchronization (OB Bridge) component for Openbravo ERP!. This document
describes the component requirements, installation and usage on both sides of synchronization process, Magento
and Openbravo. All main component parts are described in more details, including illustration images and exam-
ples. It specifies server and browser requirements and information about environment constraints. The documen-
tation is helpful for both web developers and website administrators / owners.

iii

Table of Contents
1. Introduction .. 1

1.1. Technical Requirements ... 1
2. Openbravo added features ... 3

2.1. Category tree ... 3
2.2. Configurable products .. 3
2.3. Related products ... 3
2.4. Product files .. 3
2.5. Notifications .. 3
2.6. Coupon codes .. 3
2.7. Weditor ... 3
2.8. Order recalculation .. 4
2.9. Adjustable shipping price ... 4

3. Installation ... 5
3.1. Prerequisities .. 5
3.2. Installation ... 5

4. Administration (backend) .. 6
4.1. Magento API user ... 6
4.2. Openbravo web store configuration .. 6
4.3. Openbravo process settings ... 7
4.4. Openbravo IS settings .. 8

5. Synchronization processes ... 10
5.1. Customer Category .. 10
5.2. Customer ... 10
5.3. Product Category .. 11
5.4. Attribute and Attribute Set .. 11
5.5. Product .. 12
5.6. Product Relations .. 12
5.7. Product Image .. 13
5.8. Product Stock Data .. 13
5.9. Coupon Rule .. 14
5.10. Coupon Code .. 14
5.11. Order ... 14
5.12. Payment ... 15
5.13. Shipping .. 17
5.14. IS Settings .. 17
5.15. Delete .. 18

6. Important knowledges before start .. 19
7. How to extend .. 20

7.1. MagentoSyncProcess .. 20
7.2. Triggers on Openbravo ... 21
7.3. Extending Magento API ... 22

1

Chapter 1. Introduction
OB Bridge, online connector, is a specialized set of software components for Openbravo and Magento
for online data synchronization between these systems. It becames required part of ERP Openbravo
because covers synchronization of all important entities. Important entities are in our case these busi-
ness objects:customer with contact information, addresses, categories, products, products attributes,
prices and of cource orders with payments, shippings and parcel numbers. The whole synchronization
is running on the background and can be completely scheduled, so user doesn't have to spent his time
by managing processes over and over again. There is no needed to special settings if component is
installed correctly. Data synchronization is running automatically in background. Integration covers
synchronization data from Magento to Openbravo and vice versa.

1.1. Technical Requirements
1.1.1. Server Requirements

There are two server sites to handle: Openbravo server and Magento server.

The component is compatible and has been tested with:

• Openbravo3 MP22.1

• Java 1.6.0_45 (x84)

• PostgreSql 9.2.4

• Tomcat 6.0

• Ant 1.7.1

• Magento 1.7.0.2

• php 5.3.13

• MySql 5.5.24

• Apache 2.2.22

1.1.2. Software Requirements
OB Bridge uses XmlRpc client 3.1.3 Java framework from Apache foundation. When using different
versions of this framework, proper functionality may not be guaranteed. OB Bridge contains this li-
brary in its installation set.

Please note, that you can not use XmlRpc Client framework at the same time without special adjust-
ment. There may exist a conflict between these frameworks that needs to be resolved. All libraries
should run in non-conflict mode.

1.1.3. Database Requirements
OB Bridge will do modification in the Openbravo database during installation. Please, ensure that
database user has all permissions to execute commands for add new table, column or trigger.

Introduction

2

1.1.4. Browser Compatibility
The component behavior is not depend on you web browser choice. So feel free at choosing your
favorite one, recomended is Chrome browser

3

Chapter 2. Openbravo added features
OB Bridge brings additional features to Openbravo beside full integration with Magento. Below is list
of the new features, which are now available.

2.1. Category tree
Default Openbravo does not enable to assign one product to the more categories. OB Bridge brings this
well know feature from Magento so one product could be placed into several categories now. Whole
structure of categories and sub-categories is synchronized to Magento.

2.2. Configurable products
Configurable product is a known term from Magento. OB Bridge brings same functionality into Open-
bravo. User can make more products with the same attribute set, define for each one an attribute val-
ue and create one configurable product based on the same attribute set. As a result you get only one
product in your web store that wraps all child-products with unique attribute values.

2.3. Related products
Related products works the same way as in Magento now. There is one product for example LCD
monitor and there are two products DVI and HDMI cable as its related products that can be bought
with monitor. The same relations and minimum quantity of related product to main product can be
defined in Openbravo.

2.4. Product files
This functionality allows to add to product additional files like images, pdfs, docs etc. These files are
synchronized to Magento as well.

2.5. Notifications
OB Bridge provides API for other modules to be notified about the paid sales orders. Sales orders
are checked periodically using background process and for every paid sales order all the registered
listeners from other modules are called.

2.6. Coupon codes
It brings core functionality of Magento into Openbravo as well. User can define speecial product
associated to category (probably coupon category), product has its rules (discount amount, counts of
usage, etc.). When that product is bougth, the coupon code is generated, sent to the customer via email
and sent to Magento as well for synchronization.

2.7. Weditor
Provides a WYSIWYG editor for input fields in Openbravo.

Openbravo added features

4

2.8. Order recalculation
Provides API for other modules to be notified about the Recalculate Promotions button in Sales Order
window. There's a custom Java process that must be assigned to the Recalculate Promotions button
in order to work properly and be notified.

2.9. Adjustable shipping price
Shipping price is defined as another order line with name of shipping company and price that is set
for the order. You can set it by click on "Set Shipping Price" and put in required price.

Figure 2.1. Setting the shipping price

5

Chapter 3. Installation
3.1. Prerequisities

Before installing ARTIO OB Bridge, you need to have:

1. Openbravo 3 MP22.1 and Magento 1.7.0 correctly installed.

Make sure that all the needed directories (as requested by Openbravo or Magento) are writable. And
database users have all granted permissions.

3.2. Installation
1. into the Magento

• copy all modules to directory /app/code/local/Artio/...

• copy all config files to /app/ets/modules/...

• clean the cache and run

2. into the Openbravo

• copy all modules to directory /modules/...

• run commands "ant update.database" and "ant smartbuild" in command line

Please, watch for any error messages generated during installation. If any error appears, the installation
might not have been completed correctly.

6

Chapter 4. Administration (backend)
4.1. Magento API user

The main point of communication between Openbravo and Magento is calling Magento web services
API from Openbravo. All requests are secured on Magento site by username and password, that must
be assigned to our connection. To create our XML-RPC User just follow these steps:

In Admin mode go to System -> Web Services -> SOAP-XML-RPC-Roles and create a role with all
permisions. Next go to System -> Web Services -> SOAP-XML-RPC-Users and create an user with
assignation of registered role.

Figure 4.1. Creating Magento Xml-rpc user

4.2. Openbravo web store configuration
As a next step, we need to configure a web store in our Openbravo installation. Web store is nothig
else, just record contains URL of Magento API and username and password for secured connection.

To set Web store just open window "Web store", create a new record and fill all required fields:

• Organization: this organization is assigned to all created entities records by default

• Commercial name: name of your web store - used just as note.

• URL: direct url address to your magento API, you can create it just by http://<address of the store>/
api/xmlrpc

• Username: name of the user from magento XML-RPC User registration

• Password: password of the user from magento XML-RPC User registration

Administration (backend)

7

Figure 4.2. Web store configuration

Tip

: There can be only one created web store, if you create more than one, it will be used only
the first active one.

4.3. Openbravo process settings
When Openbravo is able to connect to Magento via API, it is possible to define synchronization rules.
It means to set value how often must synchronization for particular object occurs. For instance, lets
take a customer entity. It can sychronized quite often, regularely about every ten minutes. Other entity,
for example customer categories, can be synchronized just in time of created or updated some. :

Note

: every synchronization process takes system resources for its running, so take it carefully
when you are creating them.

To create new synchronization process, is needed to open "Process Request" window and fill these
fields:

• Client: openbravo client, accessible during process from OBContext

• Organization: openbravo organization, accessible during process from OBContext

• Process: registered synchronization process

• Timing: options to run it immediately, scheduled or later in defined time

Figure 4.3. Process Request registration

Administration (backend)

8

4.4. Openbravo IS settings
In case of using some constants with defined values that needs to be the same in both systems, you can
set them here. In Openbravo, there is a database table AS_Settings handled from window IS Settings.
Synchronization is supported by ISSettingsProcess, that takes needed attributes and their values to
save them in magento. Only these two are now important to know:

4.4.1. Related products discount
OB Bridge contains support for related products and this is a place where you can define a special
discount for all related producs. This feature supports to set a discount for specific amount of child-
products, which are related to the main product, if child-producs are bough at one with main product
in one order. If the discount is set to zero, there is no discount applied.

Figure 4.4. Related product discount

4.4.2. Shipping product
This is very important part of handling shipping price to each order. If you create an order at Magento
site, the shipping price is adjustable by settings. Openbravo has an option to define a shipping price as
was written in chapter 2. To allow this functionality, is needed to create a simple product, name it as
you wish, with no attrbutes and no prices and in the window IS Settings assign it as a shipping product.
Thanks to this, it will be assigned to each order as another order line that will define a shipping price.

Figure 4.5. Shipping product

Administration (backend)

9

4.4.3. Coupon discount product
Customer can buy voucher as virtual product. It means that voucher with uniqe code is generated
and could be used as gift. Checkout page of Magneto has a field for enter voucher code. Magento
validate if voucher code is corrent and apply discount. Order contains one more line with discount
value. Discounted order is synchronized into Openbravo.

Figure 4.6. Coupon code settings

10

Chapter 5. Synchronization
processes
5.1. Customer Category

In default, this process handles the synchronization of customer categories from Openbravo to Ma-
gento. If category is named "Supplier Services" or "Supplier", could be changed in the configuration,
the process will assign no tax to them.

Name:Customer Category Synchronization

Way:One way, from Openbravo to Magento

Tables:

• Openbravo:

• C_Bp_Group

• Magento:

• customer_group

5.2. Customer
This process reflects all updates on customer entity, include its addresses and contact information on
both sites of communication.

Name:Customer Synchronisation

Way: Two way, from Openbravo to Magento and vice versa.

Tables:

• Openbravo:

• C_Bpartner

• Ad_User

• C_BPartner_Location

• Mageno:

• customer_entity*

• customer_address*

Notice: Two way synchronization can cause conflicts. That means the situatition when on both sites
a newly updated record appears and it's ready to synchronize. This case is solved in this way: updated

Synchronization processes

11

record from Magento will replace the changes in Openbravo. Message about the potential conflict is
written into log file.

*includes all derivated tables by attribute types (_int, _date, _text, _varchar)

5.3. Product Category
Product categories, its names, descriptions, places in a category tree are moved from Openbravo to
Magento by this process. It can reflect also changes in category tree by moving categories on Magento
site.

Name: Product Category Synchronization

Way: One way, from Openbravo to Magento.

Tables:

• Openbravo:

• M_Product_Category

• AD_Tree

• AD_TreeNode

• Mageno:

• catalog_category_entity*

• catalog_category_flat_store

*includes all derivated tables by attribute types (_int, _date, _text, _varchar)

5.4. Attribute and Attribute Set
Product can be more specificaly defined by its attributes wapped in attribute set. They can be created
and managed on Openbravo and Magento. This process allows user to define them only in Openbravo
with effects on Magento side.

Name: ARTIO AttributeSet Synchronization

Way: One way, from Openbravo to Magento.

Tables:

• Openbravo:

• M_AttributeSet

• M_Attribute

• M_AttributeUse

• Mageno:

Synchronization processes

12

• eav_attribute

• eav_attribute_set

Notice: This process creates only attribute sets and attributes. All attributes are created as type "select"
and values for them are sending by product process directly to the saved product.

5.5. Product
Product itself is moved from Openbravo to Magento by this process. Synchronization includes infor-
mation about prices, descriptions, meta-information, added attributes by attribute set, tax category and
visibility.

Name: Product Synchronization

Way: One way, from Openbravo to Magento.

Tables:

• Openbravo:

• M_Product

• M_AttributeValue

• M_ProductPrice

• AEC_Product_Cat_Xref

• Mageno:

• catalog_product_entity*

• catalog_product_index_price

• catalog_product_link

• catalog_product_link_attribute*

*includes all derivated tables by attribute types (_int, _date, _text, _varchar)

5.6. Product Relations
Product Relations is a binding between two products that gives one to position of related to second.
This relation is moved to Magento by this process on already synchronized products.

Name: Product Relations Synchronization

Way: One way, from Openbravo to Magento.

Tables:

• Openbravo:

• ARP_Related_Product

Synchronization processes

13

• M_Product

• Mageno:

• catalog_product_relation

5.7. Product Image
Process ensures synchronization images for products from Openbravo to Magento.

Name: Product Image Synchronization

Way: One way, from Openbravo to Magento.

Tables:

• Openbravo:

• M_Product

• APAF_File

• Mageno:

• catalog_product_entity_media_gallery

• catalog_product_entity_media_gallery_value

Notice: This process moves only information about picture (name, address, type), not picture itself.
This means that user have to physicaly move his images to required directory and information like
name, type, address are moved by this process into Magento database. It is possible to use rsync to
sychronize product images.

5.8. Product Stock Data
Products stock data, information about avalable counts of each product in warehouse is by this process
moved into Magento. It's very simple process that moves just a little data so it doesn't take a lot of
system resources. By this way it can be scheduled in shorter iterations.

Name: Stock Data Synchronisation

Way: One way, from Openbravo to Magento.

Tables:

• Openbravo:

• M_InventoryLine

• Mageno:

• cataloginventory_stock_item

• cataloginventory_stock_status

Synchronization processes

14

5.9. Coupon Rule
Coupon rule defines conditions for getting discount at the cart/checkout. Scenario how this whole
process wiht synchronization works is described in chapter 2.6. This process has as a task to move
Openbravo coupon products as coupon rules to Magento.

Name: Coupon Rules Synchronization

Way: One way, from Openbravo to Magento.

Tables:

• Openbravo:

• M_Product

• M_Product_Category

• Mageno:

• salesrule

• salesrule_website

Notice: This process creates products too. It is purchasable product that generates coupon code to
customer.

5.10. Coupon Code
After coupon product is bought and paid, on Openbravo site is created coupon code that is synchronized
to Magento by this process. It allowes customer to use his coupon on eshop.

Name: Coupon Code Synchronization

Way: One way, from Openbravo to Magento.

Tables:

• Openbravo:

• ACPN_Coupon_Code

• Mageno:

• salesrule_coupon

• salesrule_coupon_usage

Notice: After using coupon on order, discount is show and moved back with code to Openbravo, so
there is no option to use code more than once.

5.11. Order
Ther is this process that handles moving records from Magento eshop to Openbravo ERP and back
to synchronize new or updated order. Customer can see on Magento website own orders and made

Synchronization processes

15

changes. The order entity record in our terminilogy means an order with all order items, customer with
his billing and shipping address and shipping price and discounts too.

Name: Order Synchronization

Way: Two way, from Openbravo to Magento and back.

Tables:

• Openbravo:

• C_Order

• C_Orderline

• C_OrderlineTax

• C_BPartner

• C_BPartner_Location

• Mageno:

• sales_flat_quote*

• sales_flat_quote_address*

• sales_flat_quote_item*

• sales_flat_quote_item_option*

• sales_flat_quote_payment*

• sales_flat_quote_shipping_rate*

• sales_flat_order

• sales_flat_order_item

• sales_flat_order_address

• sales_flat_order_grid

Notice 1: Order can not be updated at Magento site, so when update happens on Openbravo site,
process will reorder (cancel old and create new) the order on Magento site.

Notice 2: Order has its specific order number, it is created defaultly in Magento and Openbravo too. As
option to show to the customer the right order number, there is in Magento created table order_number
where are stored all that number during synchronization.

5.12. Payment
Payment of order is a little more complicated issue, and by this way is handled by two processes.
There is to solve creating only one invoice, synchronize payments both ways and booking orders too.
So let's split this chapter to make it simple.

Synchronization processes

16

5.12.1. From Magento to Openbravo
There is option when order is payd directly after is was created. It was payd by credit card or paypal...
The main point is, that on Magento site was created invoice base on payment. These invoice is better
not to show to customer because now it's only record of payment for synchronization process. The
process takes all new invoices on Magento site and by them it will book orders assigned to them on
Openbravo and by the amount there will be created payment. Now Orders are paid on Openbravo and
ready to continue by shipping and invoicing...

Name: Payment Synchronization

Way: One way, from Magento to Openbravo.

Tables:

• Openbravo:

• FIN_Payment

• FIN_Payment_Detail

• FIN_Payment_Schedule

• FIN_Payment_ScheduleDetail

• Mageno:

• sales_flat_invoice

• sales_flat_invoice_grid

• sales_flat_invoice_item

• sales_flat_order_payment

5.12.2. From Openbravo to Magento
In other way, when payment was placed on Openbravo site and there was created invoice of the order,
the invoice can be sended to customer by mail and by synchronize process Order in Magento site will
be invoiced. That will prevet to show paid order as not paid to customer.

Name: ARTIO Invoice Synchronisation

Way: One way, from Openbravo to Magento.

Tables:

• Openbravo:

• C_Invoice

• C_InvoiceLine

• FIN_Payment_Schedule

Synchronization processes

17

• FIN_Payment_ScheduleDetail

• Mageno:

• sales_flat_invoice

• sales_flat_invoice_grid

• sales_flat_invoice_item

• sales_flat_order_payment

5.13. Shipping
To synchronize record that point on order what is and what is not shipped, there is this process. A part
of that is sending tracking numbers of packages to order on Magento site, to notice his future owner.

Name: ARTIO Shipping Synchronisation

Way: One way, from Openbravo to Magento.

Tables:

• Openbravo:

• M_InOut

• M_InOutLine

• Aship_Parc_No

• Mageno:

• sales_flat_shipment

• sales_flat_shipment_item

• sales_flat_shipment_track

Notice: When order is marked as "can be shipped separately", there is option to send not all order
items but just available product. In this case there will be synchronized this partly shipping.

5.14. IS Settings
Settings presented in previous chapter (4) can be importnat in Magento too. For example the related
product discount is moved as constant into Magento to the tabel core_config_data with record path
"sales/related_discount/discount_in_percent".

Name: ARTIO IS Settings Synchronization

Way: One way, from Openbravo to Magento.

Tables:

Synchronization processes

18

• Openbravo:

• AS_Settings

• Mageno:

• core_config_data

5.15. Delete
When some entity record is deleted on Openbravo and we need to delete him on the Magento site, we
need to use this synchronization process.

Name: ARTIO Delete Process

Way: One way, from Openbravo to Magento.

Notice: This is ready for enetities : customer, product, product category and order (not booked or paid).

19

Chapter 6. Important knowledges
before start

Notice about Openbravo Organization settings : Most processes are one way synchronization from
Openbravo to Magento. But processes that saves new data from Magento to Openbravo needs to know
what is the right Organization for created entity record (if you have them more than one). For example
if a newly created order has assigned wrong Organization (different as product in that order or tax
category or tax rate,...) there is no option to correctly count taxes on this order. To all new orders
is assigned Organization that you have setted in Web Store configuration from chapter 4, section 2.
And to all order lines, shipping lines and payments record will be assigned the same one. For new
customer in Openbravo site is that the same situation, the organisation assigned to him is taken from
web store config too.

Notice about payment methods : In default build of OB Bridge there is support for only one kind of
payment method to synchronize for order. It is payment by check. There are two reasons, why only
this one. At first is this only one that exists in clean magento and openbravo setup defaultly. And as
second reason, that any other company will add on both sides the payment methods that they are using.
How to add them programmatically is described in next chapter as tutorial.

Notice about shipping methods : This is the same story as in previous paragraph. The only one
shipping method that is availible in this build of OB Bridge to synchronize is FLAT_RATE. The
reasons are the same as in previous and tutorial for adding new one is ready too.

20

Chapter 7. How to extend
7.1. MagentoSyncProcess

In time, when you need to create your own synchronize process, you can just implement the abstract
class net.artio.magento.MagentoSyncProcess.java and it will give you a set of method to implement.

• String getItemPrintName(HashMap<String, Object> itemData) - In case of logging, this method
can return user friendly item print name of entity record

• boolean initialize(AMSPWebStore webStore, XmlRpcClient client, String sessionId) - to init pro-
cess by saving global values and return true if everything is ok.

• String getChangedItemsMethod() - Returns name of magento API method that returns a list of
newest entity records (identifiers).

• String getItemListMethod() - Returns name of magento API method that returns an info of newest
entity records (detail view).

• BaseOBObject synchronizeItem(Object itemData) - to provide saving new or updated founded en-
tity.

• String getName() - This method holds and returns process name

• Vector<Object> getChangedItemsArguments() - Sets arguments for magento API. Like lastTime of
sync (to get an updated records from that time)

• List<Object> getItemsFromOB() - This is called in iterations so the best way is to returns entity
records in bashes.

• String getSyncMagentoMethod() - returns name of magento API method, that will handle our send-
ed data

• Object toItemData(Object entity) - Convert Openbravo class model (can be more than one class
type) to hashMap where keys are defined in Magento API.

• void resolveKeys(Object[] keys) - to save magento indentifiers as result of synchronization.

• void actualizeSyncData() - to store time when process was runned at last.

• String getId(Object object) - returns openbravo identifier of the entity.

• Object getItemsToFilter(Object object) - returns ids or conditions to get details of entity record.

• void refreshMagSyncTime() - Entity can have a record in AMSP_Data table where is stored last
time of calling of magento API for that entity.

• Object[] saveKeys(Object[] items) - Keys that come from magento in MAG -> OB way, can be
stored to prevent lost of them during some failure.

• void handleException(Exception e) - to save exception to other log file we can use this.

Complete documentation describes implemented methods, inputs and outputs is in java doc.

How to extend

21

To create process that will synchronize entity records one way, you do not have to implement all of
this methods. In every case, the method initialize have to return true, so that's the firts thing you have
to check. To implement GetName and getItemPrintName is good for logging.

• for Openbravo -> Magento way just implement : getItemsFromOB, getSyncMagentoMethod,
toItemData, resolveKeys, actualizeSyncData and getId. (for example AttributeSetProcess.java)

• for Magento -> Openbravo way just implement : getChangedItemsMethod, getItemList-
Method, synchronizeItem, getChangedItemsArguments, getId, getItemsToFilter. (for example
PaymentProcess.java)

• for both way synchronization you need to implement all the methods. (for example
OrderProcess.java)

After your process is ready, you need to register it into Openbravo. Log in as System Administrator,
go to window Report and process and create a new process record.

Figure 7.1. Report and Process window

7.2. Triggers on Openbravo
Triggers are one of the best and maybe the fastest way how to handle changes on entity
records. How to create own trigger is described in this tutorial: http://wiki.openbravo.com/wi-
ki/ERP_2.50:Developers_Guide/How_To_Create_a_Trigger

-- Function: amsp_m_product_trg()

-- DROP FUNCTION amsp_m_product_trg();

CREATE OR REPLACE FUNCTION amsp_m_product_trg()
 RETURNS trigger AS
$BODY$ DECLARE

 BEGIN
 SELECT COUNT(*) INTO v_count FROM AMSP_Process;
 RAISE NOTICE '%',v_count;
 IF v_count > 0 THEN

 RETURN NEW;
 END IF;

 IF TG_OP = 'UPDATE' THEN
 BEGIN
 IF(NEW.EM_AMSP_MAGENTO_KEY = OLD.EM_AMSP_MAGENTO_KEY
 AND NEW.EM_AMSP_SYNC_AT = OLD.EM_AMSP_SYNC_AT)
 THEN
 NEW.EM_AMSP_SYNC_AT := null;

How to extend

22

 RETURN NEW;
 END IF;
 RETURN NEW;
 END;
 END IF;
 IF TG_OP = 'DELETE' THEN
 BEGIN
 INSERT INTO AMSP_DELETE VALUES(get_uuid(), '0', '0', 'Y', TO_DATE(NOW()), '0', TO_DATE(NOW()),
 '0', 'product', OLD.value);

 RETURN OLD;
 END;
 ELSE
 RETURN NEW;
 END IF;

END
; $BODY$
 LANGUAGE plpgsql VOLATILE
 COST 100;
ALTER FUNCTION amsp_m_product_trg()
 OWNER TO tad;

Each entity where we need synchronize updated records too, have to be marked. As a main synchro-
nization mark is used em_amsp_sync_at column in the Openbravo entity table. When it is empty, the
entity record have to be synchronized. When the entity record is updated, this is a right event to clear
that column. So in each entity there is a trigger ready to handle update event where is only one simple
condition. When there is an update event and the new record has the same em_amsp_magento_key
and em_amsp_sync_at (so it was not actualized during synchronization) as the old record, the update
belongs to another entity columns and em_amsp_sync_at has to be errased (set to null). After that it
will be finded by his process to synchronization.

Some triggers handles delete event too. Entities where delete have to be performed on Magento site
too like customer or product just run their trigger on delete event and to table amsp_delete type of
entity and its magento identifier* (em_amsp_magento_key => if is null, the entity record was not
synchronized and there is no need to synchronize its delete) is stored. and of cource the scheduled
Delete process will iterate all records and run Magento API methods to delete them.

*in case of product, there is sku used as identifier

7.3. Extending Magento API
Best way how to start extending API is to read some official tutorial, like this http://
www.magentocommerce.com/wiki/doc/webservices-api/custom-api. In the next step is very important
to know in what shape we are sending data from Openbravo and in what shape we are waiting for an
answer. Let's have a look at this:

• As magento API input all methods used by OB bridge are waiting for an array of objects that consists
of two parts. First one is 'ob_id' that is a return mark. The return answer will contains this id and we
will know if that object was synchronized correctly. And the second one is 'data' and it's array of
data of the sended object. The inner structure of 'data' depends of course on the type of saved entity.

• As an output we are expecting an array of associated arrays (in java hashmaps) where is ob_id
(identifier of sended object) as a key and result of operation (mostly magento identifier of that
object). If we have magento identifier sended back to openbravo after correct synchronization, we
can store it and use it in time of update. Most of the synchronized entities on Openbravo site has
added columns:

• em_amsp_magento_key - identifier from magento for that entity record

http://www.magentocommerce.com/wiki/doc/webservices-api/custom-api
http://www.magentocommerce.com/wiki/doc/webservices-api/custom-api

How to extend

23

• em_amsp_sync_at - timestamp of last synchronization

With knowledge of input and output you can create your own methods that you will call from Open-
bravo scheduled process.

